Novel roles of peroxiredoxins in inflammation, cancer and innate immunity
نویسندگان
چکیده
Peroxiredoxins possess thioredoxin or glutathione peroxidase and chaperone-like activities and thereby protect cells from oxidative insults. Recent studies, however, reveal additional functions of peroxiredoxins in gene expression and inflammation-related biological reactions such as tissue repair, parasite infection and tumor progression. Notably, peroxiredoxin 1, the major mammalian peroxiredoxin family protein, directly interacts with transcription factors such as c-Myc and NF-κB in the nucleus. Additionally, peroxiredoxin 1 is secreted from some cells following stimulation with TGF-β and other cytokines and is thus present in plasma and body fluids. Peroxiredoxin 1 is now recognized as one of the pro-inflammatory factors interacting with toll-like receptor 4, which triggers NF-κB activation and other signaling pathways to evoke inflammatory reactions. Some cancer cells release peroxiredoxin 1 to stimulate toll-like receptor 4-mediated signaling for their progression. Interestingly, peroxiredoxins expressed in protozoa and helminth may modulate host immune responses partly through toll-like receptor 4 for their survival and progression in host. Extracellular peroxiredoxin 1 and peroxiredoxin 2 are known to enhance natural killer cell activity and suppress virus-replication in cells. Peroxiredoxin 1-deficient mice show reduced antioxidant activities but also exhibit restrained tissue inflammatory reactions under some patho-physiological conditions. Novel functions of peroxiredoxins in inflammation, cancer and innate immunity are the focus of this review.
منابع مشابه
Multiple Roles of Peroxiredoxins in Inflammation
Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammatio...
متن کاملDrosophila at the intersection of infection, inflammation, and cancer
Recent studies show that both cellular and humoral aspects of innate immunity play important roles during tumor progression. These interactions have traditionally been explored in vertebrate model systems. In recent years, Drosophila has emerged as a genetically tractable model system for studying key aspects of tumorigenesis including proliferation, invasion, and metastasis. The absence of ada...
متن کاملDrosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in re...
متن کاملp120-Catenin: a novel regulator of innate immunity and inflammation.
p120-Catenin is the prototypic member of a subfamily of armadillo repeat domain proteins. Like its structural homologues, β- and γ-catenin, p120-catenin is an essential component of adherens junctions in endothelial cells and other polarized adherent cells. p120-Catenin binds directly to the cytoplasmic domain of cadherin and contributes to the regulation of cell-cell junctional integrity. Stud...
متن کاملInflammation and cancer: an ancient link with novel potentials.
Infection and chronic inflammation contribute to about 1 in 4 of all cancer cases. Mediators of the inflammatory response, e.g., cytokines, free radicals, prostaglandins and growth factors, can induce genetic and epigenetic changes including point mutations in tumor suppressor genes, DNA methylation and post-translational modifications, causing alterations in critical pathways responsible for m...
متن کامل